Short Reports 2893

while fraction 8 gave 3'-OMe-chrysosplenol (8 mg) and 6,7,4'-tri-OMe-3,5,3'-trihydroxyflavone (12 mg). Fraction 9 afforded chrysosplenol (22 mg).

Arteannuin C (3). Colourless crystals, mp 128°; IR $v_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 1770 (γ -lactone), 1250, 930, 860, (epoxide), MS m/z (rel. int.): 248 [M] $^+$ (5), 230 [M - H₂O] $^+$ (7), 206 [M - ketene] $^+$ (70), 190 [M - OCOCH₂] $^+$ (67), 177 (75), 169 (100), 55 (35), 43 (58), 41 (42); 1 H NMR (CDCl₃): δ 2.05 (ddd, H-1 α , J = 12, 3, 3 Hz), 2.65 (s, H-5 α), 2.66 (dddd, H-7, J = 12, 6, 3, 3 Hz), 6.20 (d, H-13, J = 3 Hz), 5.40 (d, H-13', J = 3 Hz), 0.95 (brd, H-14, J = 6 Hz), 1.30 (s, H-15). [θ]₂₇₀ - 1249.

$$\alpha_{26}^{\lambda} = \frac{589}{-26.04} \frac{578}{-27.36} \frac{546}{-36.04} \frac{435}{-55.6}$$
 (MeOH; c 0.53).

Acknowledgements-The author thanks Dr. A. Husain, Director,

CIMAP, Lucknow, for suggesting the problem and his keen interest in the work.

REFERENCES

- Singh, A., Kaul, V. K., Singh, A., Mahajan, V. P., Misra, L. N., Thakur, R. S. and Husain, A. (1986) *Indian J. Pharm. Sci.* (in press).
- Tu, Y., Ni, M., Zhong, Y., Li, L., Cui, S., Zhang, M., Wang, X. and Liang, X. (1981) Yaoxue Xuebao 16, 366 (Chem. Abstr. 97, 52497q).
- Liu, H., Li, K. and Wo, W. C. (1980) Yao Hsueh Tung Pao, 15, 39 (Chem. Abstr. 95, 121030e).
- Tu, Y., Ni, M., Zheng, Y., Li, L., Cui, S., Zhang, M., Wang, X., Ji, Z. and Liang, X. (1982) Planta Med. 44, 143.
- Jeremic, D., Jokic, A., Behbund, A. and Stefanovic, M. (1973) Tetrahedron Letters 32, 3039.

Phytochemistry, Vol. 25, No. 12, pp. 2893-2895, 1986. Printed in Great Britain.

0031-9422/86 \$3.00 + 0.00 © 1986 Pergamon Journals Ltd.

A NOR-DITERPENE AND OTHER CONSTITUENTS FROM ISOCOMA CORONOPIFOLIA

X. A. DOMÍNGUEZ, J. VERDE S., NORMA E. GUERRA R., E. ELLENMAURER* and JASMIN JAKUPOVIK*

Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, N. L. Sucursal de Correos 'J', 64849 México; *Institute for Organic Chemistry, Technical University of Berlin, D-1000 Berlin 12, West Germany

(Revised received 29 April 1986)

Key Word Index—Isocoma coronopifolia; Astereae; grindelanes; diterpenes; nor-labdane; sesquiterpenes; endoperoxide; renecraviotonic acid, a cedrene derivative.

Abstract—The aerial parts of *Isocoma coronopifolia* afforded several known compounds including diterpenes related to grindelic acid, one of them being a new *nor*-diterpene. Furthermore a new eudesmene endoperoxide and a derivative of α -cedrene were isolated.

The aerial parts of Isocoma coronopifolia Greene, tribe Astereae, afforded, in addition to the widespread compounds β -seseline, caryophyllene, δ -cadinene and β phytene (see Experimental), the diterpene grindelic acid 1 [1-6], and its analogs 2 [7], 3 [8] and 4 [9] as well as the nor-diterpene 5. The structure of the latter was deduced from the molecular formula and the ¹H NMR spectrum (see Experimental) which was in part close to that of the corresponding 6-desoxo derivative [9]. The presence of a singlet at δ 2.91 and the downfield shifts of H-7 and H-17 indicated the presence of 6-keto group. From a Wcoupling between H-14 and H-16 the quasi-axial orientation of the 13-methyl group was deduced. Furthermore, the endoperoxide 6 and the cedrene derivative renecraviotonic acid (7) were present. The structure of 6 was deduced from the spectral data. The presence of an

endoperoxide was indicated by the mass spectrum, which showed loss of oxygen from the molecular ion. The 1H NMR spectrum (see Experimental) showed that an eudesmane derivative was present. Spin decoupling allowed the assignment of most signals. The stereochemistry followed from the presence of a W-coupling between H-1 α and H-14 α , from the NOE between H-15 and from biogenetic considerations. The necessary precursor would be eudesm-5,7-diene which should react with oxygen from the α -side as the β -side is hindered by the methyl groups at C-4 and C-10.

The structure of renecraviotonic acid (7), which was transformed to the methyl ester 7a, was deduced from the 1HNMR spectrum (see Experimental) which was very similar to that of α -cedrene and the corresponding 15-aldehyde. Spin decoupling allowed the assignment of

7 R = H 7a R = Me

most signals and NOE difference spectroscopy established the stereochemistry. Clear effects were obtained between H-12, H-10 (12%) and H-5 (4%), between H-13, H-6 (10%) and H-5 (8%), between H-14 and H-2 (6%) as well as between H-2, H-3 (10%), H-6' (6%) and H-14 (5%).

The chemistry of this species indicated a relationship with the genus Haplopappus by the co-occurrence of grindelic acid derivatives [2-6]. The only other Isocoma species which has been investigated chemically, I. wrightii, gave no diterpenes but several derivatives of δ -seseline [10] and some widespread compounds [11-16].

EXPERIMENTAL

The air dried aerial parts (500 g, voucher 7986, collected in Cuatro Ciénegas, Coah. México, deposited in the herbarium of the Instituto Tecnológico de Monterrey) were extracted with Et₂O-petrol-MeOH (1:1:1) and the extract obtained was defatted with MeOH and separated first by CC (silica gel) into six fractions (1: petrol, 2: Et₂O-petrol, 1:9; 3: Et₂O-petrol, 3:7; 4: Et₂O-petrol, 1:1; 5: Et₂O and 6: Et₂O-MeOH, 9:1). Prep. TLC (silica gel-AgNO₃ coated, Et₂O-petrol, 9:1) gave 5 mg β seseline, 1.5 mg caryophyllene, 3 mg δ -cadinene, 5 mg β -phytene, 4.5 mg α -seseline and 9 mg δ -seseline. Prep. TLC (petrol) of fraction 2 gave 5 mg squalene and 1 mg 6. Prep. TLC of fraction 3 (Et₂O-petrol, 1:9) afforded 4 mg friedelin, 70 mg bisabolol and 135 mg trans-toxol angelate. Flash chromatography of fraction 4 (Et₂O-petrol, 1:1, Et₂O) gave 15 mg 5-hydroxy-3,7,4'trimethoxyflavone and a mixture which gave by HPLC (RP 8, MeOH-H₂O, 7:3, ca 3 ml/min) 2.6 mg 5 (R, 7.2 min), 6 mg 4, 265 mg 3, 5 mg oplapanone and 2 mg grindelic acid prep. TLC of fraction 5 (Et₂O-petrol, 4:1) afforded 6.5 mg sukuranetin, 10 mg kumatakenin and a crude product which gave by HPLC (MeOH-H₂O, 7:3) 1 mg 7 (R, 7.8 min). Prep. TLC of fraction 6 $(C_6H_6-CH_2Cl_2-Et_2O, 1:1:1)$ gave 12 mg 2 and 31 mg 3. Known compounds were identified by comparing the 400 MHz ¹H NMR spectra with those of authentic material.

Methyl-4 β -hydroxy-6-oxo-18-nor-grindelate (5). Colourless oil, MS m/z (rel. int.): 350 [M]⁺ (61) (C₂₀H₃₀O₅), 332 [M

 $-H_2O]^+$ (36), 259 [333 $-CH_2CO_2Me]^+$ (26), 109 (66), 15 (100); 1H NMR (400 MHz, CDCl₃): δ 2.91 (s, H-5), 5.73 (q, H-7), 2.76 (d, H-14), 2.59 (br d, H-14), 1.36 (s, H-16), 1.99 (d, H-17), 1.41 (s, H-19), 1.39 (s, H-20), 3.68 (s, OMe) [J (Hz): 7,17 = 1.5: 14,14′ = 14].

Eudesm-6-ene-5 α ,8 β -endoperoxide (6). Colourless oil; MS m/z (rel. int.): 236 [M]⁺ (2) (C₁₅H₂₄O₂), 204 [M - O₂]⁺ (12), 189 [204 - Me]⁺ (4), 161 [204 - C₃H₇]⁺ (18), 85 (100); ¹H NMR (CDCl₃): δ 1.98 (br ddd, H-1), 2.05 (m, H-4), 6.06 (dd, H-6), 4.47 (ddd, H-8), 1.89 and 1.17 (dd, H-9), 2.62 (dqq, H-11), 1.13 (d, H-12), 1.07 (d, H-13), 0.95 (br s, H-14), 1.20 (d, H-15) [J (Hz): 1α ,1 β = 1α ,2 β = 13; 1α ,2 α = 4; 4, 15 = 7,6,8 = 6,11 ~ 1.5; 8,9 = 3.5; 8,9' = 2.5; 9,9' = 13; 11,12 = 11,13 = 7].

Renecraviotonic acid $(2\beta-hydroxy-\alpha-cedrene-15-oic\ acid,\ 7)$. Colourless oil; MS m/z (rel. int.): 250 [M] $^+$ (48) (C₁₅H₂₂O₃), 232 [M $^-$ H₂O] $^+$ (34), 217 [232 $^-$ Me] $^+$ (16), 189 (52), 162 (74), 123 (88), 109 (68), 81 (62), 69 (96), 55 (100); 1 H NMR (CDCl₃): δ4.60 (brd, H-2), 6.68 (d, H-3), 2.67 (d, H-5), 1.78 (dd, H-6), 1.60 (d, H-6'), 1.80 (m, H-7), 2.27 (brdd, H-10), 0.97 (s, H-12), 1.06 (s, H-13), 1.10 (d, H-14) [J (Hz): 2,3 = 2.5; 5,6 = 3.5; 6,6' = 12; 7,14 = 7; 9,10 = 9',10 = 9].

Addition of CH₂N₂ afforded the methyl ester 7a; colourless oil; 1 H NMR (CDCl₃): δ 4.58 (br dd, H-2), 6.55 (d, H-3), 2.68 (d, H-5), 1.78 (dd, H-6), 1.57 (d, H-6'), 1.75 (m, H-7), 2.25 (dd, H-10), 0.92 (s, H-12), 1.05 (s, H-13), 1.09 (d, H-14), 3.74 (s, OMe) [J (Hz): 2,3 = 2.5; 2,OH = 6; 5,6 = 4; 6,6' = 11.5; 7,14 = 7; 9,10 = 9',10 = 9].

Acknowledgements—We thank Professor Dr. Ferdinand Bohlmann, Technical University of Berlin for his scientific help and Dr. Héctor Mayagoytia and CONACYT of Mexico for the financial grant PCECBNA-031053.

REFERENCES

- Mangoni, L. and Bellardini, M. (1962) Gazz. Chim. Ital. 92, 983.
- Guerreiro, E., Kauka, J., Saad, J. R., Oriental, M. A. and Giordono, O. S. (1981) Rev. Latinoam. Quim. 12, 77.
- Rose, A. F., Jones, K. C., Haddon, W. F. and Dreyer, P. L. (1981) Phytochemistry 20, 2249.
- 4. González, S. M., Colovibo, M. I., Zudenigo, M. E. and

- Ruveda, E. A. (1984) Phytochemistry 23, 1685.
- Timmermann, B. N., Luzbetak, D. J., Hoffmann, J. J., Jolad, S. N., Schran, K. H., Bates, R. B. and Klenck, R. E. (1983) Phytochemistry 22, 523.
- Oriental, M. A., Guerrero, E. and Giordano, O. S. (1984) Rev. Latinoam. Quim. 15, 73.
- Bruun, T., Jackman, L. M. and Stenhagen, E. (1962) Acta Chem. Scand. 16, 1675.
- 8. Rose, A. F. (1980) Phytochemistry 19, 2689.
- Bohlmann, F., Ahmed, M., Borthakur, N., Wallmeyer, M., Jakupovic, J., King, R. M. and Robinson, H. (1982) Phytochemistry 21, 167.

- 10. Bohlmann, F. and Zdero, C. (1976) Phytochemistry 15, 1075.
- 11. Zalkow, L. H., Harris, R. N., III, Van Dervier, D. and Bertrand, J. A. (1977) Chem. Commun. 456.
- 12. Zalkow, L. H. and Ghosal, M. (1969) J. Org. Chem. 34, 1646.
- 13. Zalkow, L. H., Cabat, G. A., Chetty, G. L., Chosal, M. and Keen, G. (1968) Tetrahedron Letters 5727.
- Zalkow, L. H., Burke, N. I. and Keen, G. (1964) Tetrahedron Letters 217.
- Zalkow, L. H., Epko, B. A. and Burke, N. I. (1977) Phytochemistry 16, 1610.
- Zalkow, L. H., Burke, N. I., Cabet, G. A. and Grula, E. A. (1962) J. Med. Pharm. Chem. 5, 1342.

Phytochemistry, Vol. 25, No. 12, pp. 2895-2896, 1986. Printed in Great Britain.

0031-9422/86 \$3.00+0.00 Pergamon Journals Ltd.

A SPIROSTANOL GLYCOSIDE FROM AGAVE CANTALA

G. PANT*, O. P. SATI, K. MIYAHARA† and T. KAWASAKI†

Department of Chemistry, University of Garhwal, Srinagar (U.P.), 246174, India; †Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka, 573-01, Japan

(Received 3 January 1986)

Key Word Index—Agave cantala; Agavaceae; rhizomes; saponin; spirostanol glycoside; tigogenin; ¹³C INEPT and ¹H decoupled NMR.

Abstract—A new spirostanol glycoside, cantalasaponin-3, isolated from the methanolic extract of the rhizomes of Agave cantala, has been characterized.

INTRODUCTION

Agave species have been used for medicinal purposes and various saponins have been reported from A. cantala Roxb. [1]. This communication deals with the structure elucidation of cantalasaponin-3 (2) isolated from the rhizomes of this plant.

RESULTS AND DISCUSSION

Saponin 2, a 25*R*-spirostane derivative (IR) was found to have an M_r of 1034, as indicated from the pseudo-molecular ions at m/z 1073, 1057 and 1035 corresponding to $[M+K]^+$, $[M+Na]^+$ and $[M+H]^+$ ions, respectively, in its FD-mass spectrum. The peaks at m/z 925/903 and at 895/873 arise from the loss of terminal pentose and hexose, respectively, from $[M+Na]^+/[M+H]^+$ ions.

Acidic hydrolysis of 2 gave tigogenin, and D-galactose, D-glucose and D-xylose in the ratio 1:2:1.

The interglycosidic linkages in 2 were established by means of ¹³CNMR spectroscopy. ¹³C chemical shifts of methyl pyranosides of β -D-galactose, β -D-glucose and β -D-xylose in pyridine- d_5 [2-4] and those of tigogenin [5] are available and the signals in 2 were assigned by the application of glycosylation shifts [2, 3]. In the ¹³C INEPT spectrum, by setting the delay time Δ as 3/4J[6], CH and Me signals were in phase, CH₂ out of phase, and quaternary carbons and carbons of the solvent were absent. In the ¹H decoupled mode the signals in the sugar region of 2 and 1 [1], the 12-oxo analogue of 2, were almost superimposable. This observation was further supported when the permethylation products of 2 and its partial hydrolysis product, PS2, gave methylated sugars identical to those obtained after permethylation of 1 and PS₃ [1], respectively.

The anomeric linkages were deduced as β from the ¹H NMR spectrum of 2 and by the application of Klyne's rule [7].

Thus, 2 was characterized as $3-O-[\{\beta-D-glucopyranosyl(1 \rightarrow 3)-\beta-D-glucopyranosyl(1 \rightarrow 2)\}\{\beta-D-xylopyranosyl(1 \rightarrow 4)\}-\beta-D-galactopyranosyl]-(25R)-5\alpha-spirostan-3\beta-ol, a 12-deoxo analogue of 1 [1]. This provides an example of the co-occurrence of hecogenin and tigogenin glycosides with identical sugar chains.$

^{*}To whom correspondence should be addressed.